Long Time Behavior of a Modified Becker-Döring System

نویسنده

  • Peter Smereka
چکیده

Abstract A modification, based on asymptotic behavior, of the Becker-Döring system is introduced in which the concentration of monomers is slaved to the concentrations of the other clusters. This modified system has the same continuum limit as usual Becker-Döring system. For one member of these it is proved, for compact initial data, that all solutions will converge to a unique self-similar solution as time tends to infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behavior of solutions to the generalized Becker-Döring equations for general initial data

Abstract We prove the following asymptotic behavior for solutions to the generalized Becker-Döring system for general initial data: under a detailed balance assumption and in situations where density is conserved in time, there is a critical density ρs such that solutions with an initial density ρ0 ≤ ρs converge strongly to the equilibrium with density ρ0, and solutions with initial density ρ0 ...

متن کامل

Cutoff Estimates for the Becker-döring Equations

This paper continues the authors’ previous study (SIAM J. Math. Anal., 2016) of the trend toward equilibrium of the Becker-Döring equations with subcritical mass, by characterizing certain fine properties of solutions to the linearized equation. In particular, we partially characterize the spectrum of the linearized operator, showing that it contains the entire imaginary axis in polynomially we...

متن کامل

Polynomial decay to equilibrium for the Becker-Döring equations

This paper studies rates of decay to equilibrium for the Becker-Döring equations with subcritical initial data. In particular, polynomial rates of decay are established when initial perturbations of equilibrium have polynomial moments. This is proved by using new dissipation estimates in polynomially weighted ` spaces, operator decomposition techniques from kinetic theory, and interpolation est...

متن کامل

Polynomial Decay to Equilibrium for the Becker-Döring Equations (15-CNA-018)

This paper studies rates of decay to equilibrium for the Becker-Döring equations with subcritical initial data. In particular, polynomial rates of decay are established when initial perturbations of equilibrium have polynomial moments. This is proved by using new dissipation estimates in polynomially weighted ` spaces, operator decomposition techniques from kinetic theory, and interpolation est...

متن کامل

Renormalisation-theoretic analysis of non-equilibrium phase transitions I: The Becker-Döring equations with power law rate coefficients

We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. We investigate the Becker-Döring equations, originally formulated to describe and analyse non-equilibrium phase transitions, and more recently generalised to describe a wide range of physicochemical problems. In the present paper we ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007